MR Image Reconstruction from Undersampled k-Space with Bayesian Dictionary Learning

نویسندگان

  • Yue Huang
  • John Paisley
  • Xianbo Chen
  • Xinghao Ding
  • Feng Huang
  • Xiao-Ping Zhang
چکیده

We develop an algorithm for reconstructing magnetic resonance images (MRI) from highly undersampled k-space data. While existing methods focus on either image-level or patch-level sparse regularization strategies, we present a regularization framework that uses both image and patch-level sparsity constraints. The proposed regularization enforces image-level sparsity in terms of spatial finite differences (total variation) and patch-wise sparsity through in situ dictionary learning. We use the beta-Bernoulli process as a Bayesian prior for dictionary learning, which adaptively infers the dictionary size, the sparsity of each patch and the noise parameters. In addition, we employ an efficient numerical algorithm based on the alternating direction method of multipliers (ADMM). We present empirical results on several MR images, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependent nonparametric bayesian group dictionary learning for online reconstruction of dynamic MR images

In this paper, we introduce a dictionary learning based approach applied to the problem of real-time reconstruction of MR image sequences that are highly undersampled in k-space. Unlike traditional dictionary learning, our method integrates both global and patch-wise (local) sparsity information and incorporates some priori information into the reconstruction process. Moreover, we use a Depende...

متن کامل

A Weighted Two-Level Bregman Method with Dictionary Updating for Nonconvex MR Image Reconstruction

Nonconvex optimization has shown that it needs substantially fewer measurements than l 1 minimization for exact recovery under fixed transform/overcomplete dictionary. In this work, two efficient numerical algorithms which are unified by the method named weighted two-level Bregman method with dictionary updating (WTBMDU) are proposed for solving lp optimization under the dictionary learning mod...

متن کامل

Two-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging

Compressed sensing magnetic resonance imaging (CSMRI) employs image sparsity to reconstruct MR images from incoherently undersampled K-space data. Existing CSMRI approaches have exploited analysis transform, synthesis dictionary, and their variants to trigger image sparsity. Nevertheless, the accuracy, efficiency, or acceleration rate of existing CSMRI methods can still be improved due to eithe...

متن کامل

Dictionary based reconstruction of dynamic complex MRI data

Background: The use of sparse models for the reconstruction of undersampled data has been proposed as a very powerful solution for shortening acquisition times of magnetic resonance (MR) scans [1-4]. Their benefits are of particular interest in dynamic imaging such as cardiac cine, where the traditional Nyquist criterion imposes challenging spatiotemporal sampling rates. Sparse recovery methods...

متن کامل

TRZASKO AND MANDUCA: HIGHLY UNDERSAMPLED MAGNETIC RESONANCE IMAGE RECONSTRUCTION VIA HOMOTOPIC L0-MINIMIZATION 1 Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic L0-Minimization

In clinical Magnetic Resonance Imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. Following recent developments in Compressive Sensing (CS) theory, several authors have demonstrated that certain classes of MR images which possess sparse representations in some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1302.2712  شماره 

صفحات  -

تاریخ انتشار 2013